organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N-(6-Methyl-2-pyridyl)formamide

Hui-Ling Hu,^a Chia-Jun Wu,^b Pei-Chi Cheng^b and Jhy-Der Chen^{b*}

^aDepartment of Chemical Engineering and Material Engineering, Nanya Institute of Technology, Chung-Li, Taiwan, and ^bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li, Taiwan Correspondence e-mail: jdchen@cycu.edu.tw

Received 10 December 2009; accepted 11 December 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.050; wR factor = 0.148; data-to-parameter ratio = 13.3.

The molecule of the title compound, $C_7H_8N_2O$, is essentially planar with a maximum deviation of 0.0439 (1) Å from the best plane. In the crystal, $N-H\cdots O$ hydrogen bonds between self-complementary amide groups join molecules into centrosymmetric dimers.

Related literature

For the synthesis of the title compound, see: Hosmane *et al.* (1984). For background to this work, see: Wang *et al.* (2006). For the structure of 2-pyridylformamide, see: Bock *et al.* (1996).

$$\begin{array}{c|c} H & H \\ \hline \\ H & N \\ \hline \\ CH_3 \end{array}$$

Experimental

Crystal data

 $\begin{array}{lll} {\rm C_7H_8N_2O} & & a = 4.0611 \; (6) \; {\rm \mathring{A}} \\ M_r = 136.15 & & b = 8.6232 \; (12) \; {\rm \mathring{A}} \\ {\rm Triclinic}, \; P{\rm \mathring{I}} & & c = 10.3231 \; (12) \; {\rm \mathring{A}} \end{array}$

 $\begin{array}{lll} \alpha = 87.421 \ (12)^\circ & \text{Mo } K\alpha \ \text{radiation} \\ \beta = 79.344 \ (14)^\circ & \mu = 0.09 \ \text{mm}^{-1} \\ \gamma = 83.103 \ (15)^\circ & T = 295 \ \text{K} \\ V = 352.61 \ (8) \ \mathring{\text{A}}^3 & 0.5 \times 0.2 \times 0.1 \ \text{mm} \\ Z = 2 \end{array}$

Data collection

 $\begin{array}{lll} \text{Bruker P4 diffractometer} & 993 \text{ reflections with } I > 2\sigma(I) \\ \text{Absorption correction: } \psi \text{ scan} & R_{\text{int}} = 0.031 \\ (XSCANS; \text{Siemens, 1995}) & 3 \text{ standard reflections every 97} \\ T_{\text{min}} = 0.713, T_{\text{max}} = 0.940 & \text{reflections} \\ 1757 \text{ measured reflections} & \text{intensity decay: none} \\ 1222 \text{ independent reflections} & \end{array}$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.050 & 92 \ {\rm parameters} \\ WR(F^2) = 0.148 & {\rm H-atom\ parameters\ constrained} \\ S = 1.05 & {\Delta \rho_{\rm max}} = 0.15\ {\rm e\ \mathring{A}^{-3}} \\ 1222\ {\rm reflections} & {\Delta \rho_{\rm min}} = -0.16\ {\rm e\ \mathring{A}^{-3}} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$N1-H1A\cdots O^{i}$	0.86	2.04	2.8971 (19)	172

Symmetry code: (i) -x + 3, -y + 1, -z + 1.

Data collection: *XSCANS* (Siemens, 1995); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Sheldrick, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful to the National Science Council of the Republic of China for support. This research was also supported by the project of the specific research fields in Chung-Yuan Christian University, Taiwan, under grant No. CYCU-98-CR—CH.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2247).

References

Bock, H., Van, T. T. H., Solouki, B., Schödel, H., Artus, G., Herdtweck, E. & Herrmann, W. A. (1996). *Liebigs Ann. Chem.* pp. 403–407.

Hosmane, R. S., Burnett, F. N. & Albert, M. S. (1984). J. Org. Chem. 49, 1212–1215.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Wang, Y.-H., Chu, K.-L., Chen, H.-C., Yeh, C.-W., Chan, Z.-K., Suen, M.-C., Chen, J.-D. & Wang, J.-C. (2006). CrystEngComm, 8, 84–93.

supplementary m	aterials	

Acta Cryst. (2010). E66, o180 [doi:10.1107/S1600536809053549]

N-(6-Methyl-2-pyridyl)formamide

H.-L. Hu, C.-J. Wu, P.-C. Cheng and J.-D. Chen

Comment

A series of Ag(I) coordination polymers containg 2-aminopyrimidine or 2-amino-4,6-dimethylpyrimidine ligands have been prepared, which show one-dimensional and two-dimensional structures (Wang, *et al.*, 2006) with interesting bonding modes. To investigate the effect of flexibility of the ligand on the structural type of such coordination polymers, we have synthesized the title compound. Within this project its crystal structure was determined.

The title molecule is almost planar (Fig. 1). In the crystal structure weak intermolecular N—H···O hydrogen bonding is found between self-complementary amide groups (Table 1) that connects molecules into centrosymmetric dimers. In 2-pyridylformamide the molecules formed dimers via hydrogen bonds between self-complementary 2-pyridylamino groups (Bock *et al.*, 1996).

Experimental

The title compound was prepared according to a procedure reported for N-(2-pyrimidinyl)formamide by Hosmane *et al.* (1984). Coloress plate crystals suitable for X-ray crystallography were obtained by dissolving the title compound in CH_2Cl_2 , followed by allowing the solution to evaporate slowly under air.

Refinement

All the hydrogen atoms were placed into idealized positions and constrained by the riding atom approximation with C—H = 0.93 — 0.96 Å, N—H = 0.86 Å and $U_{iso}(H)$ = 1.5 $U_{eq}(C)$ or 1.2 $U_{eq}(C, N)$. The methyl H atoms are disordered and were refined in two different orientations.

Figures

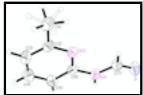


Fig. 1. Molecular structure of the title compound with atom labeling and displacement ellipsoids drawn at the 30% probability level. The disorder is shown with open bonds.

N-(6-Methyl-2-pyridyl)formamide

Crystal data

 $C_7 H_8 N_2 O$ $M_r = 136.15$

Z = 2

F(000) = 144

supplementary materials

Triclinic, $P\overline{1}$ $D_x = 1.282 \text{ Mg m}^{-3}$

Hall symbol: -P 1 Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å a = 4.0611 (6) Å Cell parameters from 23 reflections

a = 4.0611 (6) A
Cell parameters from the control of the contr

 $V = 352.61 (8) \text{ Å}^3$

Data collection

Bruker P4 diffractometer 993 reflections with $I > 2\sigma(I)$

Radiation source: fine-focus sealed tube $R_{int} = 0.031$

graphite $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 4.6^{\circ}$

ω scans $h = -4 \rightarrow 1$ Absorption correction: ψ scan

Assorption correction: ψ scali (XSCANS; Siemens, 1995) $k = -10 \rightarrow 10$ $T_{min} = 0.713, T_{max} = 0.940$ $l = -12 \rightarrow 12$

1757 measured reflections 3 standard reflections every 97 reflections

1222 independent reflections intensity decay: none

Refinement

Refinement on F^2 Primary atom site location: structure-invariant direct

Least-squares matrix: full Secondary atom site location: difference Fourier map

 $R[F^2 > 2\sigma(F^2)] = 0.050$ Hydrogen site location: inferred from neighbouring

(/1

 $wR(F^2) = 0.148$ H-atom parameters constrained

S = 1.05 $W = 1/[\sigma^2(F_o^2) + (0.0874P)^2 + 0.0372P]$

where $P = (F_0^2 + 2F_c^2)/3$

1222 reflections $(\Delta/\sigma)_{max} < 0.001$ 92 parameters $\Delta\rho_{max} = 0.15 \text{ e Å}^{-3}$

0 restraints $\Delta \rho_{min} = -0.16 \text{ e Å}^{-3}$

Special details

Experimental. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

supplementary materials

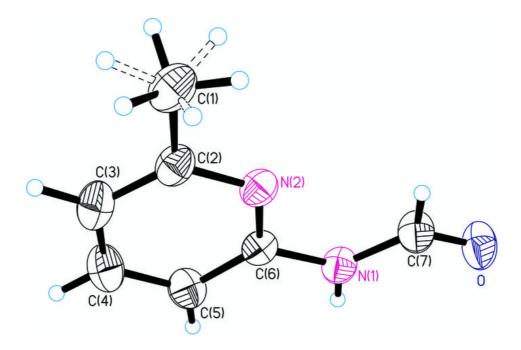
Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or e	eauivalent isotropic di	splacement	parameters	(\mathring{A}^2))
1 ractional atomic coordinates and	isomopie or c	quivalent ison opic ai	spiacemeni	parameters	(21)	,

	x	y	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
O	1.4562 (3)	0.34810 (14)	0.62540 (13)	0.0766 (5)	
N1	1.1428 (3)	0.58235 (15)	0.62843 (12)	0.0528 (4)	
H1A	1.2438	0.6042	0.5501	0.063*	
N2	0.7461 (3)	0.66352 (15)	0.81236 (13)	0.0509 (4)	
C1	0.3445 (5)	0.7290(3)	1.01096 (18)	0.0728 (6)	
H1B	0.3774	0.6176	1.0235	0.109*	0.50
H1C	0.1076	0.7634	1.0212	0.109*	0.50
H1D	0.4388	0.7780	1.0751	0.109*	0.50
H1E	0.2384	0.8217	1.0564	0.109*	0.50
H1F	0.5083	0.6759	1.0587	0.109*	0.50
H1G	0.1771	0.6613	1.0048	0.109*	0.50
C2	0.5164 (4)	0.77275 (19)	0.87483 (16)	0.0553 (5)	
C3	0.4394 (5)	0.9158 (2)	0.8175 (2)	0.0685 (5)	
Н3А	0.2829	0.9906	0.8637	0.082*	
C4	0.5969 (5)	0.9474(2)	0.6904(2)	0.0717 (6)	
H4A	0.5462	1.0435	0.6498	0.086*	
C5	0.8283 (4)	0.8360(2)	0.62478 (18)	0.0609 (5)	
H5A	0.9351	0.8536	0.5385	0.073*	
C6	0.8977 (4)	0.69680 (18)	0.69102 (15)	0.0480(4)	
C7	1.2323 (4)	0.4432 (2)	0.67961 (16)	0.0621 (5)	
H7A	1.1165	0.4164	0.7624	0.075*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O	0.0884 (9)	0.0587 (8)	0.0646 (8)	0.0094(7)	0.0201 (7)	0.0038 (6)
N1	0.0586 (8)	0.0521 (8)	0.0424 (7)	-0.0075 (6)	0.0051 (6)	0.0000(6)
N2	0.0505(8)	0.0535 (8)	0.0467 (7)	-0.0083 (6)	-0.0011 (6)	-0.0051 (6)
C1	0.0666 (11)	0.0840 (13)	0.0597 (11)	-0.0036 (9)	0.0098 (9)	-0.0148 (9)
C2	0.0468 (9)	0.0588 (9)	0.0589 (10)	-0.0068(7)	-0.0031 (7)	-0.0124 (8)
C3	0.0574 (10)	0.0579 (10)	0.0857 (13)	-0.0004(8)	-0.0027 (9)	-0.0137 (9)
C4	0.0680 (11)	0.0529 (10)	0.0918 (14)	-0.0039(8)	-0.0123 (10)	0.0086 (9)
C5	0.0616 (10)	0.0566 (10)	0.0630 (10)	-0.0121 (8)	-0.0061 (8)	0.0095 (8)
C6	0.0463 (8)	0.0500 (9)	0.0479 (8)	-0.0112 (7)	-0.0046 (6)	-0.0036 (7)
C7	0.0702 (11)	0.0563 (10)	0.0493 (9)	-0.0014(8)	0.0121 (8)	0.0035 (7)


Geometric parameters (Å, °)

O—C7	1.2192 (19)	C1—H1F	0.9600
N1—C7	1.327 (2)	C1—H1G	0.9600

supplementary materials

24 06	4 400 (0)		G2 G2			
N1—C6	1.402 (2)		C2—C3		1.371 (3)	
N1—H1A	0.8600		C3—C4		1.380 (3)	
N2—C6	1.325 (2)		C3—H3A		0.9300	
N2—C2	1.339 (2)		C4—C5		1.368 (3)	
C1—C2	1.502 (2)		C4—H4A		0.9300	
C1—H1B	0.9600		C5—C6		1.380 (2)	
C1—H1C	0.9600		C5—H5A		0.9300	
C1—H1D	0.9600		C7—H7A		0.9300	
C1—H1E	0.9600					
C7—N1—C6	125.62 (13)		H1D—C1—H1G		141.1	
C7—N1—H1A	117.2		H1E—C1—H1G		109.5	
C6—N1—H1A	117.2		H1F—C1—H1G		109.5	
C6—N2—C2	117.87 (15)		N2—C2—C3		122.02 (16)	
C2—C1—H1B	109.5		N2—C2—C1		116.18 (15)	
C2—C1—H1C	109.5		C3—C2—C1		121.80 (16)	
H1B—C1—H1C	109.5		C2—C3—C4		119.19 (17)	
C2—C1—H1D	109.5		C2—C3—H3A		120.4	
H1B—C1—H1D	109.5		C4—C3—H3A		120.4	
H1C—C1—H1D	109.5		C5—C4—C3		119.38 (17)	
C2—C1—H1E	109.5		C5—C4—H4A		120.3	
H1B—C1—H1E	141.1		C3—C4—H4A		120.3	
H1C—C1—H1E	56.3		C4—C5—C6		117.69 (17)	
H1D—C1—H1E	56.3		C4—C5—H5A		121.2	
C2—C1—H1F	109.5		C6—C5—H5A		121.2	
H1B—C1—H1F	56.3		N2—C6—C5		123.81 (16)	
H1C—C1—H1F	141.1		N2—C6—N1		117.00 (14)	
H1D—C1—H1F	56.3		C5—C6—N1		119.19 (14)	
H1E—C1—H1F	109.5		OC7N1		124.40 (15)	
C2—C1—H1G	109.5		O—C7—H7A		117.8	
H1B—C1—H1G	56.3		N1—C7—H7A		117.8	
H1C—C1—H1G	56.3					
Hydrogen-bond geometry (Å, °)						
<i>D</i> —H··· <i>A</i>	i	<i>D</i> —Н	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>	
N1—H1A···O ⁱ		0.86	2.04	2.8971 (19)	172	
Symmetry codes: (i) $-x+3$, $-y+1$, $-z+1$			2.01	2.07/1 (17)	112	
Symmetry codes. (1) $-x+3$, $-y+1$, $-z+1$						

Fig. 1

